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Abstract 
Building energy prediction models expedite performance assessment and assist in decision-

making, from early-stage design to retrofit planning at single- or multi-building scales. How-
ever, the number of parameters involved in the energy performance evaluation often impede 
the prediction process requiring the assimilation of high-dimensional, uncertain input. This is 
compounded further at multi-building scale e.g. urban energy modelling, due to the increased 
complexity of evaluating diverse building geometries. While single-building sensitivity and un-
certainty analysis is well-established for identifying the most influential input parameters and 
evaluate the uncertainty effects on energy demand, these are hard to generalize at multi-building 
scale which remains relatively unexplored. The present study advances existing research by 
applying a variance-based sensitivity analysis to assess the impact of varying (i) building façade 
layout, (ii) envelope thermal properties, (iii) envelope air tightness and (iv) building occupancy. 
The analysis is conducted for multiple buildings under two future climate variations, while also 
considering the degradation of material thermal properties. The latter is derived from known 
deterioration models for single-building uncertainty propagation, relying on experimental and 
simulated data. The approach is applied to a temperate oceanic climate with particular focus on 
the Dutch building stock, including a sample of buildings with diverse geometric characteristics 
in Rotterdam. First-order Sobol indices are computed to evaluate the impact with respect to the 
heating, cooling and total energy demand. Our findings indicate that infiltration is the most 
influential factor for heating energy demand, whereas cooling is mostly affected by the enve-
lope thermal properties and, particularly, window solar heat gain coefficient. Common patterns 
regarding the impact of insulation across different envelope components can be identified 
among buildings with similar orientation and compactness ratio indicating the importance of 
considering these geometric properties in retrofit decision-making workflows.  
 

Keywords: sensitivity analysis, uncertainty propagation, building energy performance, cli-
mate change, material degradation. 



  
 

  
 

1 INTRODUCTION 

One third of the global energy consumption currently stems from the operational energy 
needs of buildings [1], making the building industry a key sector in the efforts to reduce carbon 
emissions. Energy upgrading of the building stock is essential since, in the EU, 80% of the 
current buildings is expected to be still in place by 2050 [2], but most of them are currently 
energy inefficient [3]. Moreover, ageing degradation of insulation is expected to cause long-
term decay in thermal performance of the building envelope [4, 5], thus influencing the building 
energy performance [6]. In this direction, retrofit decision-making frameworks are needed to 
achieve maximum energy efficiency considering multi-faceted criteria [7]. These often rely on 
high-fidelity simulators and surrogate models for energy performance prediction [8], requiring 
a multitude of input parameters and associated uncertainties that can be hard to obtain [9].  

Therefore, sensitivity analysis (SA) studies have been developed to identify the most im-
pactful parameters for energy demand [10].  

So far, the research has revolved around building sub-systems such as the building envelope 
or single-buildings [9, 11], while few SA studies examine the impact on diverse geometries 
[12] and urban-scale applications [13, 14]. Besides building-specific parameters [9], the effect 
of weather has also been evaluated, examining different locations [9, 12] or future climate sce-
narios [15, 16, 17]. Particularly, in cold climates, conventional overinsulating solutions, such 
as improving wall insulation or installing triple-glazed windows, can prove to be unsuitable in 
the future, since they can increase overheating risk during summer [18, 19] because of the ex-
pected increase in outside temperature due to climate change [20].   

From a methodological perspective, SA studies for building energy performance analysis 
(BEPA) employ both local and global SA techniques, with global techniques being mostly pre-
ferred since they allow to explore the entire input space [21]. The most common GSA methods 
in BEPA are: (i) Morris method [22], which provides a qualitative ranking [13]; (ii) Sobol in-
dices [23], which quantify the relative impact of the input parameters on the output [13]; (iii) 
hybrid approaches, using Morris method to screen out non-important parameters followed by 
the Sobol indices computation [9]. Sampling is usually conducted using Monte-Carlo sampling; 
Latin Hypercube Sampling (LHS) [9]; or Sobol sequence via the Saltelli scheme [13, 24].  

In the Netherlands, given that heating outweighs cooling demand because of the cold climate, 
SA studies have primarily focused on evaluating the most influential parameters for heating 
energy demand using the standardized rank regression coefficient method [25, 26]. Moreover, 
evaluation of the impact of the total heating and cooling demand, as calculated according to the 
Dutch standards, has been conducted using Morris and Sobol methods [27]. The effect of insu-
lation degradation on building energy performance has, however, not yet been examined in the 
Dutch context. 

Focusing on the Dutch building stock, this study performs SA to examine the relative im-
portance of building envelope and occupant-related parameters on both heating and cooling 
annual energy needs individually as well as in the total annual energy outcome. The study ex-
pands existing knowledge by identifying common patterns among different outputs and evalu-
ates how these change in future weather conditions. Global sensitivity analysis (GSA) is 
employed to effectively explore the entire input space and, particularly, first-order Sobol indi-
ces are computed to allow for a quantitative comparison among input parameters. Diverse build-
ing geometries in Rotterdam are used to further examine how geometric characteristics affect 
both the Sobol indices and the distribution of the energy results. Moreover, material degradation 
uncertainties are considered during sampling. The energy results from all model evaluations are 
compared with the respective results at a pristine state to evaluate the effect of ageing in the 
energy demand. Overall, key insights are drawn regarding the impact of relevant parameters 
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and parameter groups on the energy outcome given current and future weather conditions; the 
effect of geometric characteristics on the parameter ranking; as well as the influence of material 
degradation in the energy demand in the Dutch context.  

2 METHODOLOGY 

The sensitivity analysis study is conducted on four existing single-family buildings of Rot-
terdam, capturing different adjacency types, size, layout and orientation (Table 1).  The research 
methodology is structured into three main parts: (i) selection of example buildings; (ii) identi-
fication of input parameters; and (iii) sensitivity analysis (Fig.1).  

Table 1: Geometric characteristics of example buildings. (AT: adjacency type (-) ; NF: number of floors (-); 
A_BF: total building floor area (m2); AZ_EW: average azimuth of exposed walls (º); CR: compactness ratio (-); 

FH: floor height (m); A_EW: area of exterior walls (m2); A_R: area of roof (m2)) 

 

   
 Building 0 (B0) Building 1 (B1) Building 2 (B2) Building 3 (B3) 

AT Terraced  Corner Terraced Terraced 
NF 2 3 3 3 

A_BF 93.90 m2 190.62 m2 138.58 m2 179.70 m2 
AZ_EW 163.59º 179.65º 232.08º 151.64º 

CR 1.67 1.73 1.24 1.17 
FH 2.98 m 2.81 m 2.22 m 2.24 m 

A_EW 62.48 m2 203.37 m2 80.06 m2 90.81 m2 
A_R 46.95 m2 63.54 m2 46.19 m2 59.90 m2 

 
Figure 1:Schematic sensitivity analysis workflow. Input variables marked with an asterisk are calculated consid-

ering the degradation effect on insulation performance. 



  
 

  
 

2.1 Selection of example buildings 

Specifically, the example buildings consist of terraced houses (B0, B2, B3), which are situ-
ated in a row between two neighboring geometries, and a corner house (B1), which is placed at 
the end of the row and has only one adjacent building. The exposed walls and openings of B0, 
B2, B3 are in different orientations, with B0 being aligned in the east-west axis; B3 in the north-
south; and B2 having an intermediate orientation, with exposed walls placed in south-east and 
north-west directions. Moreover, although B3 and B2 have the largest and second-largest total 
building floor area respectively, they are also the most compact when compared to B0, given 
their relatively smaller floor height. Lastly, unlike the other 3 buildings, B1 has only one neigh-
boring building on the east side and all other wall surfaces are exposed to exterior weather 
conditions. Given the large area of exposed envelope surfaces, B1 is the least compact building, 
while, additionally, it has the largest total floor area of all example buildings.  

2.2 Simulation setup 

The building energy performance simulations are conducted using EnergyPlus [28] and the 
respective input data files (.idf) are generated using Eppy [29] and GeomEppy [30] Python 
libraries. All buildings correspond to single-family dwellings without individual apartments on 
each level. Therefore, although different thermal zones per floor are considered in the simula-
tion, the final energy outcome is computed from the cumulative sum of the energy across all 
floors normalized by the total building floor area.  

The building geometries are reconstructed in LoD (Level of Detail) 1.2, i.e. assuming a uni-
form volume extrusion with planar roofs and no height variations, using open-source data from 
the 3DBAG dataset [31]. Due to unavailability of data related to façade layout, all openings are 
generated in a uniform way using the presumed window-to-wall ratio. Specifically, they are 
created as horizontal openings in all walls that are exposed to exterior weather conditions.  

Adiabatic conditions are assumed for interior floors, ceilings and wall surfaces that are ad-
jacent to neighboring buildings, while all other surfaces are modelled as exposed to exterior 
conditions. Under the ground floor slab, the soil temperature is set to 18oC throughout the year. 
This reflects the special case of soil under a conditioned slab, avoiding any extreme ground 
temperatures that can result in misleading building losses [32]. The effect of shading from 
neighboring buildings is not taken into account in the simulations. Lastly, mechanical ventila-
tion is not considered and an ideal system with infinite capacity is assumed instead. 

The computations follow the Dutch standards [33], which define that heating demand is 
evaluated only between October-March, while cooling is assessed between April-September. 
The annual total energy demand is the sum total of annual heating and cooling energy needs. 
Two different weather conditions are evaluated in the sensitivity analysis study; current and 
future weather variations (Fig.2). Specifically, the Typical Meteorological Year (TMY) weather 
file for Rotterdam-The Hague [34] is selected to represent current weather conditions, capturing 
interannual variability in the climate input. Future weather data are generated by applying the 
morphing technique through the future weather generator [35]. In this case, the TMY data are 
used as base to perform the morphing according to SSP 5-8.5 as defined from EC-Earth-3 cli-
mate model [36] for year 2050, indicating a worst-case scenario in which the rate of carbon 
emissions is not reduced in the long-term. Due to the nature of the morphing technique, which 
generates future data through adding or multiplying on top of historical weather values, trends 
in weather patterns are assumed to be maintained in future periods (Fig.2).  
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Figure 2: Hourly dry bulb temperature patterns for Rotterdam-The Hague during the course of a year according 

to TMY and SSP 5-8.5 data.  

2.3 Sensitivity analysis setup 

The input parameters 𝑋௜ that are considered during sampling as well as their probabilistic 
distributions are defined based on literature and belong to the following groups (Table 2):  
𝐺ଵ.  Façade layout. The variations in this group are expressed through window-to-wall 

(WWR) ratio (𝑋ଵ) uncertainties. Given the use of existing buildings in this study, all other ge-
ometric characteristics, such as building layout, orientation and size, are extracted from open-
source GIS data [31]. However, the distribution of openings in the façade is not directly avail-
able and, thus, assumptions are made regarding the WWR. In this study, the ranges used for the 
probabilistic distributions vary for terraced and corner houses and are based on information 
extracted from the Energy module of Woon2018 survey [37] and presented in [38].  
𝐺ଶ. Envelope thermal properties, including the thermal resistance (R value) of the insulation 

in opaque envelope components, i.e. wall (𝑋ଶ௔), roof (𝑋ଷ௔) and ground floor (𝑋ସ௔); the effect 
of ageing in the thermal conductivity of insulation boards (𝑋ଶ௕, 𝑋ଷ௕, 𝑋ସ௕); the thermal conduc-
tivity (U value) and solar heat gain coefficient (SHGC) of window glazing (𝑋ହ, 𝑋଺). 

Apart from the ageing factor, the probabilistic distributions for all envelope thermal proper-
ties are uniform with minimum and maximum values defined based on typical archetype values 
[39] and potential retrofits designated particularly for the Dutch housing stock [40]. Specifically, 
in the case of insulation for opaque envelope components, the retrofits represent polyisocyanu-
rate (PIR) insulation panels with varying material thicknesses. The minimum threshold of 2.7  
𝑚ଶ𝐾 𝑊⁄  (corresponding to the thermal resistance of an insulation board with thickness 80 mm) 
is further adjusted to 0.1 in (𝑋ଶ௔,𝑋ଷ௔,𝑋ସ௔), capturing the possibility of the envelope compo-
nents being uninsulated. Lastly, window thermal conductivity (U) values span a range from 
vacuum glazing to triple, double, and single glazing, while solar heat gain coefficient values do 
not consider the effect of shading and cover a range from clear single glazing to triple glazing 
with low-emissive coating.  

The ageing factor is calculated accounting for an operation period of 20 years. By accounting 
for different weather files in the evaluation, the study captures both the option of buildings that 
were retrofitted in the past and have aged and the option of buildings being retrofitted today 
and aging over the next 20 years. In both cases, the ageing factor is defined following the ap-
proach described in [5].  

𝑑௜௡௦,ଶ଴ ~ 𝒩ቆ𝑑መ௜௡௦,ଶ଴,
𝑑መ௜௡௦,ଶ଴ െ 1

3
ቇ (1) 



  
 

  
 

where 𝑑௜௡௦,ଶ଴ is the sampled ageing factor; and 𝑑መ௜௡௦,ଶ଴ is the mean ageing factor at year 20, 
defined using the Agesim software [41]. In the software calculations, loss of thermal perfor-
mance in PIR insulation boards results only from alterations in gas phase conduction due to 
progressive gas diffusion. The standard deviation of the distribution is defined as a function of 
the mean ageing factor, thus progressively increasing over time. The thermal resistance of the 
insulation 𝑟௜,ଶ଴ at each envelope component 𝑖 (i.e. floor, wall, roof) is computed as: 

where 𝑟௜௡௜௧,௜ is the thermal resistance of the insulation in the 𝑖 component at a pristine state. 
Since the ageing factor is defined for thermal conductivity, which is inversely proportional to 
thermal resistance, the inverse fraction of the ageing factor is considered in the calculation. 
𝐺ଷ. Envelope air tightness, including only infiltration (𝑋଻ሻ without accounting for uncertain-

ties in natural ventilation schedules. Similarly to the thermal parameters, the interval of the 
uniform distribution is determined based on typical archetype values and potential retrofit in-
terventions.  
𝐺ସ. Building occupancy. The parameters here express uncertainties around the fixed values 

of heating and cooling thermostat setpoints (𝑋଼, 𝑋ଽሻ, which can occur as a result of the building 
operation schedule.  

Table 2: Random variables and probabilistic distributions employed in sensitivity analysis study. 

Group Variable Distribution Unit Reference 

𝐺ଵ. Façade  
layout 

𝑋ଵ.Window-to-wall ratio 

Uniform (Range: 
0.43-0.66 for terraced houses,  

0.20-0.30 for detached &  
corner houses 

- [38] 

𝐺ଶ. Envelope 
thermal 

properties 

𝑋ଶ௔. R value of wall insula-
tion at pristine state 

Uniform 
(Range: 0.1-8.3) 

𝑚ଶ𝐾 𝑊⁄  [40] 

𝑋ଶ௕. Ageing factor of wall in-
sulation after 20 years 

Normal 
(𝜇: 1.243, 𝜎: 0.081) 

- [5] 

𝑋ଷ௔. R value of roof insula-
tion at pristine state 

Uniform 
(Range: 0.1-8.3) 

𝑚ଶ𝐾 𝑊⁄  [40] 

𝑋ଷ௕. Ageing factor of roof in-
sulation after 20 years 

Normal 
(𝜇: 1.243, 𝜎: 0.081) 

- [5] 

𝑋ସ௔. R value of ground floor 
insulation at pristine state 

Uniform 
(Range: 0.1-5.7) 

𝑚ଶ𝐾 𝑊⁄  [40] 

𝑋ସ௕. Ageing factor of ground 
floor insulation after 20 years 

Normal 
(𝜇: 1.243, 𝜎: 0.081) 

- [5] 

𝑋ହ. U value of  
window glazing 

Uniform 
(Range: 0.6-2.9) 

𝑊 𝑚ଶ𝐾⁄  [40, 42] 

𝑋଺. Solar heat gain 
coefficient of window glazing 

Uniform 
(Range: 0.5-0.9) 

- [13, 15, 27] 

𝐺ଷ. Envelope air 
tightness 

𝑋଻. Infiltration 
Uniform 

(Range: 0.0004-0.003) 
𝑚ଷ

𝑠 ∙ 𝑚ଶ [38, 39] 

𝐺ସ. Building  
occupancy 

𝑋଼. Heating setpoint 
Normal 

(𝜇: 20, 𝜎: 0.7) 
°𝐶 [33, 43] 

𝑋ଽ. Cooling setpoint 
Normal 

(𝜇: 24, 𝜎: 0.7) 
°𝐶 [33, 43] 

𝑟௜,ଶ଴ ൌ  𝑟௜௡௜௧,௜ ⋅
1

𝑑௜௡௦,ଶ଴
 (2) 
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2.4 First-order Sobol indices calculation 

The sensitivity study is conducted into two phases: (i) assessing the impact of each parameter 
group 𝐺ଵ െ 𝐺ସ through grouped sampling and (ii) evaluating the relative impact of the individ-
ual envelope thermal parameters 𝑋ଶ௔ െ 𝑋଺  when the input variables belonging to all other 
groups (𝐺ଵ,𝐺ଷ,𝐺ସሻ are fixed. Specifically, in the second case, WWR and thermostat setpoints 
are fixed to the mean values of their probabilistic distributions, whereas infiltration is set to a 
slightly improved value, corresponding to a retrofit of crack sealing (0.0007 𝑚ଷ ሺ𝑠 ∙ 𝑚ଶሻ⁄ ) [38]. 
In this regard, the importance of interventions in the different envelope components is isolated 
and insights can be drawn on which interventions are important for retrofit decision-making 
workflows in order to mitigate heating, cooling and total energy needs. In each opaque envelope 
component, i.e. wall, roof and ground floor, values for insulation thermal resistance and ageing 
factor are grouped together during sampling and, thus, first-order Sobol indices are assigned 
per component (𝑋ଶ,𝑋ଷ,𝑋ସሻ.  

In this study, sampling and first-order Sobol indices computation are conducted using the 
SALib Python library [44]. Specifically, sampling is performed using Sobol sequence [23] via 
the Saltelli scheme [24] to improve input space coverage. The total number of model evalua-
tions for each building is defined as 𝑁ሺ2𝑘 ൅ 2ሻ, where 𝑁 corresponds to the number of samples 
and 𝑘 corresponds to the number of sampling variables and/or groups, following the approach 
described in [45]. Due to computational time restrictions, 1,024 samples are drawn for each 
building in each of the two phases. Subsequently, 10,240 model evaluations are conducted per 
building in the case of grouped sampling (𝑘 ൌ 4ሻ, and 12,288 model evaluations in the second 
phase, when only envelope thermal properties are assessed (𝑘 ൌ 5ሻ. Confidence intervals are 
calculated using bootstrapping in order to assess the precision of the estimated values. 

The relative impact of each input variable is evaluated using first-order Sobol indices which 
are computed following the approach described in [24]. Total-order Sobol indices are not pre-
sented in this study, since the higher-order interactions among variables proved to be negligible. 
The first-order Sobol index 𝑆௜ for each variable 𝑋௜ is defined as: 

𝑆௜ ൌ  
𝑉௑೔ሺ𝐸𝑿~೔

ሺ𝑔ሺ𝑿ሻ | 𝑋௜ሻሻ

𝑉 ሾ𝑔ሺ𝑿ሻሿ
 (3) 

where 𝑔ሺ𝑿ሻ is the output function; 𝐸𝑿~೔
ሺ𝑔ሺ𝑿ሻ | 𝑋௜ሻ is the expected value of the output function 

with respect to all input variables except 𝑋௜ when 𝑋௜ is fixed; 𝑉௑೔ሺ𝐸𝑿~೔
ሺ𝑔ሺ𝑿ሻ | 𝑋௜ሻሻ is the vari-

ance of the expected value when different values of 𝑋௜ are assessed; and  𝑉 ሾ𝑔ሺ𝑿ሻሿ is the total 
variance of the output function. In this study, three main output functions are considered 𝑔௛ሺ𝑿ሻ,
𝑔௖ሺ𝑿ሻ and 𝑔௧ሺ𝑿ሻ, which represent the annual heating, cooling and total building energy de-
mand respectively. All values are normalized with respect to the total building floor area.  

3 RESULTS 

The first-order Sobol indices (SIs) showing the impact of the different parameters and pa-
rameter groups along with the 95% confidence intervals are illustrated in Fig.3. Moreover, Fig.4 
demonstrates the first-order Sobol indices computed for the variables belonging to 𝐺ଶ without 
considering material degradation. Lastly, Fig. 5 shows a summary of the distribution of energy 
results among all model evaluations per building, while Fig. 6 provides a comparative analysis 
between the energy results corresponding to degraded and pristine material state. 

When examining the influence of different parameter groups, it is observed that envelope air 
tightness (𝐺ଷ) has the largest impact on both heating and total energy demand. In contrast, 
cooling is mostly affected by envelope thermal properties (𝐺ଶ), followed by façade layout (𝐺ଵ) 



  
 

  
 

and air tightness (𝐺ଷ) which are ranked equally. Building occupancy (𝐺ସ) has minor impact (SI 
< 0.15) in all buildings. Interestingly, the median and variance of cooling demand are signifi-
cantly smaller than the heating and total energy demand distributions (Fig. 5).  

In future weather conditions, the influence of all parameter groups (𝐺ଵ െ 𝐺ସ) on heating 
demand remains largely unchanged. However, the impact of envelope thermal properties (𝐺ଶ)  
and façade layout (𝐺ଵ) on cooling demand increases over time, resulting in their ranking as the 
highest and second-highest parameters, followed by building occupancy ሺ𝐺ସሻ. The impact of 
envelope air tightness ሺ𝐺ଷሻ on total energy demand also decreases in future weather conditions. 
In particular, the respective SIs show a greater reduction in B0 and B2, while in B1 it is main-
tained above 0.9. However, 𝐺ଷ remains the most important parameter group in all buildings. 
This can be explained by the fact that heating remains overall larger than cooling demand re-
gardless of the expected temperature increase due to climate change (Fig.4). Therefore, the 
parameters that influence heating remain the most influential for total energy demand as well. 
However, it can overall be observed that both median and variance of heating demand in future 
weather decrease when compared to current weather conditions, while the respective properties 
of cooling demand distributions increase in all buildings. 

Although all buildings show uniform behavior in the grouped analysis, different patterns 
among example buildings can be observed in the second part of the study. Specifically, in cur-
rent weather conditions, the heating demand of terraced houses (B0, B2, B3) is mostly influ-
enced by the U value of window glazing (𝑋ହ), followed by the thermal resistance of roof (𝑋ଷሻ 
and wall (𝑋ଶሻ insulation respectively. However, 𝑋ଶ becomes the most important feature in the 
case of B1, followed by the 𝑋ହ and 𝑋ଷ. In contrast, the cooling demand in all buildings is driven 
primarily by the solar heat gain coefficient of window glazing (𝑋଺ሻ. The second most important 
parameter for cooling is 𝑋ହ for terraced houses and 𝑋ଶ in the case of B1. Unlike heating which 
is not affected at all by the thermal resistance of the ground floor insulation (𝑋ସሻ,  𝑋ସ has a 
slight impact in cooling demand. However, 𝑋ଷ does not affect at all the cooling energy outcome.  

The observed trends vary in total energy demand. In buildings B0 and B2, 𝑋଺ is the most 
influential parameter, while 𝑋ଷ and 𝑋ହ are the next most impactful variables. On the other hand, 
in B3, 𝑋ଷ and 𝑋ହ are the most significant factors, with the third being 𝑋଺. This is likely due to 
the building orientation that leaves openings in the north and south sides, thus resulting in 
smaller impact of 𝑋଺ due to alterations in the solar heat gain that is received from the windows. 
In B1, 𝑋ଶ has the largest SI, which can be explained by the larger area of exposed walls in this 
building (Table 1). 𝑋ସ has the lowest SI for total energy demand in all buildings.  

Similar trends are repeated for heating and cooling in future weather conditions, with 𝑋଺ 
having an even larger impact on cooling compared to current weather conditions. Additionally, 
𝑋଺ also becomes the determining factor for total energy demand in all terraced buildings, which 
can be explained by the fact that cooling almost outweighs heating in future conditions. Notably, 
B0 and B2, which have openings in east and west orientation, have the highest SI values for 𝑋଺. 
However, the SI for 𝑋଺ is smaller in the case B1 and almost matches the value of 𝑋ଶ, since the 
exposed wall area in this case is larger compared to the terraced houses. In fact, 𝑋ଶ and 𝑋ସ are 
the least important parameter for total energy in B0, B2 and B3. 

Comparing with the Sobol indices at the pristine state (Fig. 4), it can be observed that 𝑋ଶ 
and 𝑋ଷ have a larger impact on heating and total energy demand when degradation is considered. 
In contrast, 𝑋ହ and 𝑋଺ have overall larger impact in heating and total energy demand when all 
components are at their pristine state. All parameters have similar SIs in the case of cooling. 

Notably, the variance of both heating and total energy demand are considerably smaller 
when infiltration is not varying, reflecting the large impact of this parameter in the outcome 
(Fig. 5). Moreover, the median of heating and total energy demand is decreased in all buildings 
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when compared to the grouped analysis, but cooling distributions remain almost unchanged. 
This reflects the small impact of infiltration in cooling demand, as demonstrated through the 
grouped analysis. In the analysis focusing on envelope thermal properties, total energy demand 
distributions remain roughly unchanged between current and future weather conditions, since 
the increase in cooling demand negates the reduction in heating due to climate change. 

Lastly, in order to evaluate the effect of that insulation performance degradation on the en-
ergy outcome, the results of simulations with the same input values both with and without the 
degradation effect are compared. Afterwards, the ratio of the results at degraded state to the 
ones at pristine state is computed for each of the model evaluations in all buildings (Fig.6). 
Overall, total energy demand remains approximately unchanged in all cases. However, as a 
general pattern, heating energy is increased at the degraded state up to 8%, whereas cooling is 
decreased by up to 9%. The effect of degradation is in general small (< 10%), which is directly 
related to the fact that, in this study, only ageing due to gas diffusion in insulation of opaque 
envelope components is considered. 

  
Figure 3: First-order Sobol indices showing the impact of distinct parameters and parameter groups in building 
heating, cooling and total energy demand under current (TMY) and future (SSP 5-8.5) weather conditions. The 

error bars represent the 95% confidence intervals computed via bootstrapping. 



  
 

  
 

 

  

Figure 4: First-order Sobol indices showing the impact of the envelope thermal properties under current (TMY) 
and future (SSP 5-8.5) weather when all components are at pristine state. The error bars represent the 95% confi-

dence intervals computed via bootstrapping. 

 

Figure 5: Distribution of heating, cooling and total energy demand results among all model evaluations per 
building. The boxes, whiskers and lines depict the minimum, first quartile, median, third quartile and maximum 
of the energy results distribution, showing the variance of the energy results at each SA run. The annotated per-
centages show the difference in the medians of each energy type between current and future weather conditions. 
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Figure 6: Ratio of heating, cooling and total energy demand at the degraded state with respect to the pristine 

state. 

3.1 Discussion 

The first part of the sensitivity analysis focuses on identifying which groups of input varia-
bles have the largest impact on heating, cooling and total energy demand in current and future 
weather conditions. Similarly to other results from literature [26], heating demand is primarily 
influenced by air infiltration. This result is due to increased air exchange which results in larger 
heat losses and, subsequently, increases the building heating demand. However, unlike other 
studies which show that temperature setpoints have a large influence on energy demand [12, 
26], this study finds their effect to be marginal in all cases. This can be attributed to the proba-
bilistic distributions used for sampling. In this study, normal distributions are used to assess the 
effect of uncertainty around the mean setpoint values, which are defined according to the Dutch 
standards [33]. However, in the other studies [12, 26], uniform distributions are used, evaluating 
how different setpoint values in an extended interval can affect the energy performance.  

Moreover, it is worth emphasizing the change in Sobol indices between heating and cooling 
demand, given that the importance of input parameters for cooling demand in oceanic climates 
(mild winters and cool summers) is currently understudied. However, this will gain significant 
importance over time, given that the share of cooling to total energy demand increases in all 
cases. Particularly, the most important parameters for cooling are shown to be envelope thermal 
properties followed by window-to-wall ratio. The effect of infiltration is considerably lower in 
this case and decreases to an almost insignificant level for cooling demand in future weather. 
This is also seen from the fact that the median and variance of cooling demand are nearly iden-
tical in both grouped and envelope thermal properties analysis, when infiltration is kept constant. 
This result is directly linked to the way that infiltration is calculated in EnergyPlus [46] ac-
counting for: (a) the stack effect, which occurs because of differences between interior and 
exterior air density due to temperature and moisture variations; and (b) the effect of wind speed. 
Both effects are expected to be lower during the summer period. This result is expected to 
change in the case that natural ventilation effect is taken into account in the simulations.  

Although the trends change significantly for cooling, the Sobol indices for total energy de-
mand follow similar patterns to the heating, because all example cases are heating dominated. 
However, the higher cooling demand in future weather conditions affects slightly the outcome 
and thus, infiltration is shown to have slightly lower Sobol indices in this case. The effect is 
particularly evident in B0 and B2 which are aligned to east/west and south-east/north-west di-
rections respectively. 

Besides the various differences in geometric properties of all 4 example cases, the ranges of 
total energy demand between buildings B0-B1 and B2-B3 are similar in both current and future 
weather scenarios. This is attributed to the similar values of compactness ratio in these pairs of 
buildings. This agrees with other studies where compactness ratio is shown to affect largely 



  
 

  
 

heating demand in the Dutch context [26, 47]. Nonetheless, the share of cooling to total energy 
demand is larger in B0 and B2, which is presumably due to their orientation which is mostly 
aligned to the east/west axis. This is also reflected in these buildings having larger Sobol indices 
for solar heat gain coefficient and almost dominating cooling over heating energy demand in 
the detailed analysis in future climate conditions. As a general trend, the energy values for 
heating are reduced in all buildings in future conditions, whereas cooling demand increases by 
38.8%-93.8%, when comparing the median values of the cooling energy distributions. 

Besides compactness ratio, the total area of exposed walls also affects the outcome. In this 
regard, the wall R value is mostly important for B1, whereas in the case of terraced houses, U 
value of windows and R value of roof are overall more important. However, in this setup, the 
least influential parameter is the ground floor insulation. This can be linked to the way of sim-
ulation modelling, accounting for a constant soil temperature that reflects soil which is situated 
below a conditioned slab. Although window-to-wall ratio influences only cooling demand, it is 
considered as important given the increased value of cooling needs in future conditions. In 
heating demand, the SIs of WWR are surprising, given that the window U value is shown to 
influence heating in all cases in the second part of the analysis. However, the influence of in-
filtration is dominating in this case and, therefore, the relative impact of the other parameter 
groups may be affected accordingly. 

Additionally, it is noteworthy that when infiltration, thermostat setpoints and window-to-
wall ratio values are constant, the median and variance of energy demand in all buildings is 
considerably lower. Cooling energy in this case accounts for a larger proportion of the total 
energy demand and even outweighs heating in B0 and B2 in future weather conditions. Degra-
dation of insulation performance has only small effects on the energy performance when com-
pared to results with materials at pristine state, resulting in increased heating and decreased 
cooling energy demand because of lower thermal resistance of the building envelope. However, 
the effect on energy demand is only marginal, which is linked to the fact that, in this study, only 
ageing due to gas diffusion in insulation boards is considered. Other sources from uncertainty 
have also been mentioned in the literature, such as loss in effective area of insulation [5]; deg-
radation of insulation performance due to moisture [48] and temperature differences [49]; and 
weakening of thermal conductivity due to loss of argon in windows [50]. Integrating the various 
sources of uncertainty in the energy-retrofit decision-making workflow is considered important 
to allow for a realistic evaluation of energy performance [7]. 

4 CONCLUSIONS  

This study performs sensitivity analysis to identify the most important parameters among 
geometric, material and occupant-related criteria to include in energy assessment workflows. 
The study is performed in a temperate oceanic climate under current and future weather condi-
tions to capture the expected shift in heating and cooling needs due to global warming. Among 
all example buildings, important features to integrate in energy prediction models are: (i) com-
pactness ratio, which influences the total energy needs; (ii) window orientation and window-
to-wall ratio, influencing primarily cooling demand. Uncertainties in temperature setpoints only 
have a marginal effect, unless sampled from uniform distributions that cover diverse human 
preferences. Overall, improving infiltration is found to be the most important retrofit in the 
given setup, because it impacts both heating and total energy demand, but its effect on cooling 
is small, especially in future climate conditions. In contrast, envelope thermal parameters are 
the most impactful factor for cooling energy demand. Building upon this, when the infiltration 
is set to a slightly improved value, both the median and variance of the heating and total energy 
distribution are significantly smaller, whereas cooling is increased, indicating a potentially 
higher risk of overheating during summer. In this case, heating is mostly affected by the window 
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U value for terraced and the wall insulation for the corner house, while window solar heat gain 
coefficient has the largest impact on cooling energy. Moreover, although roof insulation affects 
heating and total energy demand, it has minimal effect on cooling. Other patterns vary per 
building, indicating that it is important to consider geometric differences in urban energy retro-
fit decisions, unlike typical archetype classifications that are usually only based on building 
adjacency type and construction year. Notably, given fixed infiltration rate, window solar heat 
gain coefficient has larger impact in the total energy demand for east-west orientation, while 
wall insulation affects more the total energy in corner houses, given the larger wall area. Ground 
floor insulation has minimal effect in all cases. Lastly, long-term degradation of insulation per-
formance due to gas diffusion modifies the building energy profile, but other sources of uncer-
tainty should also be included to allow for more realistic energy outcome. Future research can 
conduct time-dependent sensitivity analysis to identify the importance of different degradation 
sources along the building lifecycle, incorporate natural ventilation effects and/or evaluate the 
results for different climate models and weather scenarios.  
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